Nano Gadget Workshop 2005

n & μ Gadgets 2005

Overview of this workshop

8 Sep 2005 LaFonda Hotel Santa Fe, NM Santa Fe room

Refreshments, breaks, wireless, parking

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

Abstract

Microfabrication for Quantum Physics, Plasma Physics, and Biophysics Applications

ADWP Strategic Initiative in Small Science Tom Intrator, P-24 Plasma Physics, LANL

We describe a nascent Research/Program Focus Area that is the focus of collaborations between LANL, Sandia, academia, and industry. There is an Opportunity, Need, and Problem to be Solved. Next-generation electromechanical fabrication using LANL and SNL micro- and nano- scale fabrication capabilities could revolutionize key applications in Quantum Physics, Plasma Physics, and Biophysics

Quantum Physics: Microfabrication could revolutionize ion trapping, entangled photon production, and other technologies used for Quantum Simulation (QS), Quantum Computing (QC), Bose-Einstein Condensate (BEC) Interferometry, and Quantum Key Distribution (QKD). Would stimulate new algorithms for security of realistic entangled-state QKD and for entangled-state cryptographic protocols for applications beyond QKD.

Plasma Physics: Microfabrication of MHz bandwidth nano-sensors for Electric (E) and Magnetic (B) fields could provide unprecedented fine spatial resolution for measurements of strongly-coupled plasmas (as well as for Quantum applications above. Would bridge the gap between kinetic and fluid pictures, bridge multiple length scales, and enable new validations of code predictions.

Biophysics: Microfabrication of electrode arrays and enhanced large-scale models could substantially advance the DOE-led consortium to build an Artificial Retina to restore sight to the blind. The same models would advance fundamental understanding of neural networks and lead to novel information-processing solutions to national security problems. Microfabrication and associated modeling would revolutionize microfluidics-based sensors for biomolecules labeled with magnetic nanoparticles.

Nano Gadget Workshop 2005

n & μ Gadgets 2005

- Why are we here?
- LANL strategic initiative in small science
- Showcase efforts and resources
 - Sandia National Laboratory
 - Los Alamos National Laboratory
 - Academic partnerships e.g. UCLA
- Strategies for the future

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

3

Microfabrication applications

- Sponsor: ADWP Associate Director Weapons Physics
 - Quantum physics
 - D. Berkeland, M. Boshier
 - Plasma Physics
 - T.Intrator, L. Dorf, Z. Wang, C. Ticos
 - Biophysics
 - J. George, J. Maxwell, M. Espy, C.C. Wood
- Research & program focus
 - To make revolutionary advances in quantum, plasma, bio physics
 - Combine micro fab & large scale computational models to overcome key technical challenges

Opportunity, need & problem to solve

n & μ Gadgets 200

- Next generation electro mechanical fabrication
 - Quantum physics
 - Ion trapping, entangled photon production
 - Technologies used for quantum simulation, quantum computing, Bose Einstein Condensate inteferometry, quantum key distribution (QKD), entangled state cryptographic protocols beyond QKD
 - Plasma Physics
 - MHz bandwidth E, B field sensors, fine spatial resolution for strongly coupled plasmas, bridge the gap between kinetic and fluid pictures, multiple length scales, validate code predictions
 - Quantum trap applications

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

5

Opportunity, need & problem to solve

n & μ Gadgets 2005

- Next generation electro mechanical fabrication ...
 - Biophysics
 - Microfabrication of electrode arrays to advance DOE led consortium to build an Artificial Retina
 - Advance understanding of neural networks, information processing
 - Micro fluidic sensors for biomolecules

Investment questions & answers

n & μ Gadgets 2005

- What are we trying to do?
 - Electro mechanical fabrication at micro and nano scales is a common enabling technology
 - Profound impact across a wide range of ADWP scientific and technical programs
 - Cross cutting technology = opportunity for Institutional Program Development
- Why will we succeed?
 - Strong track records of investigators, collaborators
 - Broad institutional value of this initiative

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

7

Investment questions & answers

- What are today's solutions to these problems?
 - Ion traps are fabricated as one or several, limited scale up ability
 - Plasma diagnostics are macro scale, spatially integrate the micro physics
 - Retinal electrode arrays are limited in resolution, models are limited in scope
- · What are the limitations and opportunities?
 - Nascent ideas on hand
 - Need workshops, proposal writing, sponsor contacts

Overall objectives, link to lab missions

n & μ Gadgets 2005

Biophysics

- Leveraging LANL scientific and technical resources to U.S. health and environment are key elements of DOE & LANL charter
- Proposed nano & micro scale fabrications enhance contributions to key bio medical problems, leadership for major DOE initiatives

Quantum physics

- Quantum computing, cryptography, simulation are transformational technologies for US national security, LANL mission
 - QuantumInformation Science and Technology Roadmap (http://qist.lanl.gov)

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

.

Overall objectives, link to lab missions

Plasma physics

- Detailed quantitative measurements of strongly coupled plasmas essential for predictive science, LANL nuclear weapons mission
- Proposed nano & micro scale E, B sensors offer unprecedented spatial resolution, huge spatial scale range, validation of LANL nuclear weapons codes.

Benefits to LANL

Quantum Physics

- Enable LANL and SNL partners to compete effectively in NSA's Research and Development Activity (ARDA) competition to build ion traps for quantum computation.
 - Industrial scal ion trap "foundry" would substantially advance quantum compputing, a major ARDA goal
 - Maintain LANL leadership in QKD

Plasma Physics

- Nano-based sensors with unprecedented resolution will allow detailed quantitative measures for validation of predictive science theory. Sponsors (NNSA and Office of Science) will choose LANL for future research.
- Collaborations with SNL will benefit both LANL and SNL.

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

11

Benefits to LANL

Biophysics

- Will maintain and advance LANL's role in a major DOE/BER initiative having great public exposure and perceived value.
- Will ensure LANL leadership in new approaches to neurally-based information processing for important national security applications

SWOT Analysis summary

n & μ Gadgets 2005

Strengths

- We have already developed many of the "good ideas" essential for success
- We have demonstrated technical capabilities and successes
- Needed collaborations and partnerships already underway

Weaknesses

- We do not have all needed capabilities in-house
- We sometimes exhibit "notinvented here" syndrome

Opportunities

- Major sponsor demand (Intel Community, DOE/NNSA, DOE/SC, NIH, DARPA)
- Open BAAs, RFAs, RFPs, and extensions of on-going projects

Threats

- Some university competitors are cheaper
- Some university/industrial competitors are more effective and nimble as "prime contractors" for large, multiinstitutional initiatives

Nano gadgets 2005 context LAUR-05-6867 Intrator 8Sep2005

13

Summary

- Cross fertilization among a wide spectrum of efforts
- Learn about the community resources
- Path forward for the future?
- Enjoy the presentations

